Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida

121Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The meta-cleavage pathway of catechol is a major mechanism for degradation of aromatic compounds. In this pathway, the aromatic ring of catechol is cleaved by catechol 2,3-dioxygenase and its product, 2-hydroxymuconic semialdehyde, is further metabolized by either a hydrolytic or dehydrogenative route. In the dehydrogenative route, 2-hydroxymuconic semialdehyde is oxidized to the enol form of 4-oxalocrotonate by a dehydrogenase and then further metabolized to acetaldehyde and pyruvate by the action of 4-oxalocrotonate isomerase, 4-oxalocrotonate decarboxylase, 2-oxopent-4-enoate hydratase, and 4-hydroxy-2-oxovalerate aldolase. In this study, the isomerase, decarboxylase, and hydratase encoded in the TOL plasmid pWW0 of Pseudomonas putida mt-2 were purified and characterized. The 28-kilodalton isomerase was formed by association of extremely small identical protein subunits with an apparent molecular weight of 3,500. The decarboxylase and the hydratase were 27- and 28-kilodalton polypeptides, respectively, and were copurified by high-performance-liquid chromatography with anion-exchange, hydrophobic interaction, and gel filtration columns. The structural genes for the decarboxylase (xylI) and the hydratase (xylJ) were cloned into Escherichia coli. The elution profile in anion-exchange chromatography of the decarboxylase and the hydratase isolated from E. coli XylI+ XylJ- and XylI- XylJ+ clones, respectively, were different from those isolated from XylI+ XylJ+ bacteria. This suggests that the carboxylase and the hydratase form a complex in vivo. The keto but not the enol form of 4-oxalocrotonate was a substrate for the decarboxylase. The product of decarboxylation was 2-hydroxypent-2,4-dienoate rather than its keto form, 2-oxopent-4-enoate. The hydratase acts on the former but not the latter isomer. Because 2-hydroxypent-2,4-dienoate is chemically unstable, formation of a complex between the decarboxylase and the hydratase may assure efficient transformation of this unstable intermediate in vivo.

Cite

CITATION STYLE

APA

Harayama, S., Rekik, M., Ngai, K. L., & Ornston, L. N. (1989). Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. Journal of Bacteriology, 171(11), 6251–6258. https://doi.org/10.1128/jb.171.11.6251-6258.1989

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free