The pharmacological relevance of ODNs forming G-quadruplexes as anti-HIV agents has been extensively reported in the literature over the last few years. Recent detailed studies have elucidated the peculiar arrangement adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. In this review, we have reported the history of a strong anti-HIV agent: the 6-mer d(TGGGAG) sequence, commonly called “Hotoda’s sequence”. In particular, all findings reported on this sequence and its modified sequences have been discussed considering the following research phases: (i) discovery of the first 50-modified active d(TGGGAG) sequences; (ii) synthesis of a variety of end-modified d(TGGGAG) sequences; (iii) biophysical and NMR investigations of natural and modified Hotoda’s sequences; (iv); kinetic studies on the most active 50-modified d(TGGGAG) sequences; and (v) extensive anti-HIV screening of G-quadruplexes formed by d(TGGGAG) sequences. This review aims to clarify all results obtained over the years on Hotoda’s sequence, revealing its potentiality as a strong anti-HIV agent (EC50 = 14 nM).
CITATION STYLE
Romanucci, V., Zarrelli, A., & Di Fabio, G. (2019, April 10). Hotoda’s sequence and anti-HIV activity: Where are we now? Molecules. MDPI AG. https://doi.org/10.3390/molecules24071417
Mendeley helps you to discover research relevant for your work.