Shape-stabilized phase change material (SSPCM) is a promising thermal energy storage material in energy-saving buildings. However, its flammability leads to a fire risk. The conventional bulk addition method has a limited flame-retardant effect. Herein, a series of surface coatings with various flame retardants were introduced to improve flame retardance of SSPCM. The results showed that all of the coatings had flame-retardant effects on SSPCM; In particular, the EG coating performed the best: the horizontal burning time was the longest, the limiting oxygen index was above 30%, the V0 classification was obtained, the peak heat release rate was sharply decreased from 1137.0 to 392.5 kW/m2 and the burning process was prolonged with the least total smoke production. The flame-retardant mechanism was discussed. As paraffin easily evaporated from the SSPCM at a moderate temperature, it caused flames. After being surface coated, the EG-based coatings first hindered the volatilization of paraffin at a moderate temperature, then expanded and formed thick porous carbon layers at a high temperature to block the transfer of combustibles, oxygen and heat between the bulk and the environment. Therefore, the surface coating strategy achieved a desirable flame-retardant level with fewer flame retardants.
CITATION STYLE
Xu, L., Liu, X., & Yang, R. (2020). Flame retardant paraffin-based shape-stabilized phase change material via expandable graphite-based flame-retardant coating. Molecules, 25(10). https://doi.org/10.3390/molecules25102408
Mendeley helps you to discover research relevant for your work.