Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies

36Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Metal–organic frameworks (MOFs) are a group of porous materials that display potential in the elimination of toxic industrial compounds (TICs) from polluted water streams. However, their applications have so far been held up by issues due to their physical nature and cost. In this study, activated carbon (AC) is modified with an Fe-based MOF, iron terephthalate (Fe-BDC). A facile and cost-effective impregnation method is used for enhanced removal from aqueous solutions. The new adsorbent is characterized by SEM, FTIR, PXRD, and BET. The composite displays excellent uptake of Cr (VI) when compared to un-impregnated AC with a maximum monolayer adsorption capacity of 100 mg·g−1. The experimental data shows a high correlation to the Langmuir adsorption model. The adsorption kinetic study reveals that the adsorption of Cr (VI) to Fe-BDC@AC obeys the pseudo-first-order equation. The composite shows high reusability after five cycles and high adsorption rates reaching equilibrium in just 50 min. Such properties make the nanocomposite promising for water decontamination on larger scales compared to powder-based alternatives, such as individual MOF crystals.

Cite

CITATION STYLE

APA

Abuzalat, O., Wong, D., & Elsayed, M. A. (2022). Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies. Journal of Inorganic and Organometallic Polymers and Materials, 32(5), 1924–1934. https://doi.org/10.1007/s10904-022-02237-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free