Crystal structure of DsbDγ reveals the mechanism of redox potential shift and substrate specificity

46Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Escherichia coli transmembrane protein DsbD transfers electrons from the cytoplasm to the periplasm through a cascade of thiol-disulfide exchange reactions. In this process, the C-terminal periplasmic domain of DsbD (DsbDγ) shuttles the reducing potential from the membrane domain (DsbDβ) to the N-terminal periplasmic domain (DsbDα). The crystal structure of DsbDγ determined at 1.9 Å resolution reveals that the domain has a thioredoxin fold with an extended N-terminal stretch. In comparison to thioredoxin, the DsbDγ structure exhibits the stabilized active site conformation and the extended active site α2 helix that explain the domain's substrate specificity and the redox potential shift, respectively. The hypothetical model of the DsbDγ:DsbDα complex based on the DsbDγ structure and previous structural studies indicates that the conserved hydrophobic residue in the C-X-X-C motif of DsbDγ may be important in the specific recognition of DsbDα. © 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Cite

CITATION STYLE

APA

Kim, J. H., Kim, S. J., Jeong, D. G., Son, J. H., & Ryu, S. E. (2003). Crystal structure of DsbDγ reveals the mechanism of redox potential shift and substrate specificity. FEBS Letters, 543(1–3), 164–169. https://doi.org/10.1016/S0014-5793(03)00434-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free