An active set truncated Newton method for large-scale bound constrained optimization

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

An active set truncated Newton method for large-scale bound constrained optimization is proposed. The active sets are guessed by an identification technique. The search direction consists of two parts: some of the components are simply defined; the other components are determined by the truncated Newton method. The method based on a nonmonotone line search technique is shown to be globally convergent. Numerical experiments are presented using bound constrained problems in the CUTEr test problem library. The numerical performance reveals that our method is effective and competitive with the famous algorithm TRON. © 2014 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Cheng, W., Chen, Z., & Li, D. H. (2014). An active set truncated Newton method for large-scale bound constrained optimization. Computers and Mathematics with Applications, 67(5), 1016–1023. https://doi.org/10.1016/j.camwa.2014.01.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free