The proper application of machine learning and genetic algorithms in the early stage of library design can obtain better all-around building performance. The all-around performance of the library, such as indoor temperature, solar radiation, indoor lighting, etc., must be fully considered in the initial design stage. Aiming at building performance optimization and based on the method of “generative design”, this paper constructs the library’s comprehensive performance evaluation workflow and rapid prediction combined with the LightGBM algorithm. A library in a cold region of China is taken as the research object to verify its application. In this study, 5000 scheme samples generated in the iterative genetic optimization process were taken as data sets. The LightGBM algorithm was used to classify and predict design schemes, with a precision of 0.78, recall rate of 0.93, and F1-Score of 0.851. This method can help architects to fully exploit the optimization potential of the building’s all-around performance in the initial stage of library design and ensure the timely interaction and feedback between design decisions and performance evaluation.
CITATION STYLE
Zhou, Y., Wang, W., Wang, K., & Song, J. (2022). Application of LightGBM Algorithm in the Initial Design of a Library in the Cold Area of China Based on Comprehensive Performance. Buildings, 12(9). https://doi.org/10.3390/buildings12091309
Mendeley helps you to discover research relevant for your work.