Composability and predictability for independent application development,verification, and execution

35Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

System-on-chip (soc) design gets increasingly complex, as a growing number of applications are integrated in modern systems. Some of these applications have real-time requirements, such as a minimum throughput or a maximum latency. To reduce cost, system resources are shared between applications, making their timing behavior inter-dependent. Real-time requirements must hence be verified for all possible combinations of concurrently executing applications, which is not feasible with commonly used simulation-based techniques. This chapter addresses this problem using two complexity-reducing concepts: composability and predictability. Applications in a composable system are completely isolated and cannot affect each other's behaviors, enabling them to be independently verified. Predictable systems, on the other hand, provide lower bounds on performance, allowing applications to be verified using formal performance analysis. Five techniques to achieve composability and/or predictability in soc resources are presented and we explain their implementation for processors, interconnect, and memories in our platform. © 2011 Springer Science+Business Media, LLC.

Cite

CITATION STYLE

APA

Akesson, B., Molnos, A., Hansson, A., Angelo, J. A., & Goossens, K. (2011). Composability and predictability for independent application development,verification, and execution. In Multiprocessor System-on-Chip: Hardware Design and Tool Integration (pp. 25–56). Springer New York. https://doi.org/10.1007/978-1-4419-6460-1_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free