Thermal boundary layer in flow due to an exponentially stretching surface with an exponentially moving free stream

10Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

A numerical investigation is made to study the thermal boundary layer for flow of incompressible Newtonian fluid over an exponentially stretching sheet with an exponentially moving free stream. The governing partial differential equations are transformed into self-similar ordinary differential equations using similarity transformations in exponential forms. Then those are solved numerically by shooting technique using Runge-Kutta method. The study reveals that the momentum boundary layer thickness for this flow is considerably smaller than the linear stagnation point flow past a linearly stretching sheet. The momentum and thermal boundary layer thicknesses reduce when the velocity ratio parameter increases. For the temperature distribution, in addition to the heat transfer from the sheet, the heat absorption at the sheet also occurs in certain situations and both heat transfer and absorption increase with the velocity ratio parameter and the Prandtl number. The temperature inside the boundary layer significantly decreases with higher values of velocity ratio parameter and the Prandtl number. © 2014 Krishnendu Bhattacharyya and G. C. Layek.

Cite

CITATION STYLE

APA

Bhattacharyya, K., & Layek, G. C. (2014). Thermal boundary layer in flow due to an exponentially stretching surface with an exponentially moving free stream. Modelling and Simulation in Engineering, 2014. https://doi.org/10.1155/2014/785049

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free