Scalable Spatiotemporally Varying Coefficient Modeling with Bayesian Kernelized Tensor Regression

  • Lei M
  • Labbe A
  • Sun L
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

As a regression technique in spatial statistics, the spatiotemporally varying coefficient model (STVC) is an important tool for discovering nonstationary and interpretable response-covariate associations over both space and time. However, it is difficult to apply STVC for large-scale spatiotemporal analyses due to the high computational cost. To address this challenge, we summarize the spatiotemporally varying coefficients using a third-order tensor structure and propose to reformulate the spatiotemporally varying coefficient model as a special low-rank tensor regression problem. The low-rank decomposition can effectively model the global patterns of the large data sets with a substantially reduced number of parameters. To further incorporate the local spatiotemporal dependencies, we use Gaussian process (GP) priors on the spatial and temporal factor matrices. We refer to the overall framework as Bayesian Kernelized Tensor Regression (BKTR). For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) algorithm, which uses Gibbs sampling to update factor matrices and slice sampling to update kernel hyperparameters. We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and parameter inference.

Cite

CITATION STYLE

APA

Lei, M., Labbe, A., & Sun, L. (2024). Scalable Spatiotemporally Varying Coefficient Modeling with Bayesian Kernelized Tensor Regression. Bayesian Analysis, 1(1). https://doi.org/10.1214/24-ba1428

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free