This paper describes two basic elements of the smart technology, allowing us to bring to a new level the problem of early warning and mitigation of tsunami hazards for the so-called near zone events (when a destructive tsunami wave reaches the nearest coast in tens of minutes after the earthquake). The sensors system, installed in a reasonable way (to detect a wave as early as possible), is capable of transmitting the necessary raw data (measured wave profile) in a real time mode to a processing center. The smart (based on mathematical theory) algorithm can reconstruct an actual source shape within a few seconds using just a part of the measured wave record. Using modern computer architectures (Graphic Processing Units or Field Programmable Gates Array) allows computing tsunami wave propagation from the source to shoreline in 1–2 min, which is comparable to the performance of a supercomputer. As is observed, the inundation zone could be evaluated reasonably correctly as the coastal area below two thirds of the tsunami wave height at a particular location. In total, the achieved performance of the two above mentioned algorithms makes it possible to evaluate timely the tsunami wave heights along the coastline to approximate the expected inundation zone, and therefore, to suggest (in case of necessity) evacuation measures to save lives.
CITATION STYLE
Lavrentiev, M., Lysakov, K., Marchuk, A., & Oblaukhov, K. (2022). Fundamentals of Fast Tsunami Wave Parameter Determination Technology for Hazard Mitigation. Sensors, 22(19). https://doi.org/10.3390/s22197630
Mendeley helps you to discover research relevant for your work.