Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation

13Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories. The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual adaptation to parasitism and predation. Results: We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at 636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons, is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively selected genes and rapidly evolving proteins involved in energy production and motor activity, which may contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation. We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G. flavifemur, which may contribute to partner searching and mating. Conclusions: Our results provide new insights into the genome evolution, predatory adaptation, venom evolution, and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of hymenopterans that may benefit pest control.

Cite

CITATION STYLE

APA

Yang, Y., Ye, X., Dang, C., Cao, Y., Hong, R., Sun, Y. H., … Ye, G. (2021). Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation. BMC Biology, 19(1). https://doi.org/10.1186/s12915-021-01081-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free