One of the main skills of engineers is to be able to solve problems. It is generally recognized that real-world engineering problems are inherently ill-structured in that they are complex, defined by non-engineering constraints, are missing information, and contain conflicting information. Therefore, it is very important to prepare future engineering students to be able to anticipate the occurrence of such problems, and to be prepared to solve them. However, most courses are taught by academic professors and lecturers whose focus is on didactic teaching of fundamental principles and code-based design approaches leading to predetermined "right" answers. Most classroom-taught methods to solve well-structured problems and the methods needed to solve ill-structured problems are strikingly different. The focus of our current effort is to compare and contrast the problem solving approaches employed by students, academics and practicing professionals in an attempt to determine if students are developing the necessary skills to tackle ill-structured problems. To accomplish this, an ill-structured problem is developed, which will later be used to determine, based on analysis of oral and written responses of participants in semi-structured interviews, attributes of the gap between student, faculty, and professional approaches to ill-structured problem solving. Based on the results of this analysis, we will identify what pedagogical approaches may limit and help students' abilities to develop fully-formed solutions to ill-structured problems. This project is currently ongoing. This work-in-progress paper will present the study and proposed methods. Based on feedback obtained at the conference from the broader research community, the studies will be refined. The current phase includes three parts, (1) problem formulation; (2) protocol development; and (3) pilot study. For (1), two different ill-structured problems were developed in the Civil Engineering domain. The problem difficulty assessment method was used to determine the appropriateness of each problem developed for this study. For (2), a protocol was developed in which participants will be asked to first solve a simple problem to become familiar with the interview format, then are given 30 minutes to solve the provided ill-structured problem, following a semi-structured interview format. Participants will be encouraged to speak out loud and also write down what they are thinking and their thought processes throughout the interview period. Both (1) and (2) will next be used for (3) the pilot study. The pilot study will include interviewing three students, three faculty members and three professional engineers. Each participant will complete both problems following the same protocol developed. Post-interview discussion will be held with the pilot study participants individually to inquire if there were any portions of the tasks that are unclearly worded or could be improved to clarify what was being asked. Based on these results the final problem will be chosen and refined.
CITATION STYLE
Akinci-Ceylan, S., Cetin, K. S., Fleming, R., Ahn, B., Surovek, A. E., Cetin, B., & Taylor, P. (2018). Bridging the gap between academia and industry in approaches for solving ill-structured problems: Problem formulation and protocol development. In ASEE Annual Conference and Exposition, Conference Proceedings (Vol. 2018-June). American Society for Engineering Education. https://doi.org/10.18260/1-2--30157
Mendeley helps you to discover research relevant for your work.