Modeling and Experimental Study of a Novel Multi-DOF Parallel Soft Robot

15Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In view of the demand for flexible drive and large load of the soft robot in the practical application, a novel type of flexible-actuated multi-degree-of-freedom (multi-DOF) parallel soft robot is designed. The proposed robot in parallel combination of three groups of flexible-actuated elements (FAEs) realizes large load by increasing the bearing area at the connection between flexible-actuated units (FAUs). In order to improve the driving flexibility, the multi-layer FAU is used to drive independently in parallel so as to realize omnidirectional bending movement by pneumatic drive. With the coupled analysis in terms of motion and force, the mapping model of kinematic attitude parameters and the external load force with output air pressure value is established. Finally, an experimental prototype is developed and an experimental test platform is built. Then, the comparison among the experimental data, simulation results and theoretical results verifies the capability of multi-DOF omnidirectional movement and flexible-actuated large load.

Cite

CITATION STYLE

APA

Zhang, J., Wei, H., Shan, Y., Li, P., Zhao, Y., Qi, L., & Yu, H. (2020). Modeling and Experimental Study of a Novel Multi-DOF Parallel Soft Robot. IEEE Access, 8, 62932–62942. https://doi.org/10.1109/ACCESS.2020.2983260

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free