We investigated the scientific research dissemination by analyzing the publications and citation data, implying that not all citations are significantly important. Therefore, as alluded to existing state-of-the-art models that employ feature-based techniques to measure the scholarly research dissemination between multiple entities, our model implements the convolutional neural network (CNN) with fastText-based pre-trained embedding vectors, utilizes only the citation context as its input to distinguish between important and non-important citations. Moreover, we speculate using focal-loss and class weight methods to address the inherited class imbalance problems in citation classification datasets. Using a dataset of 10 K annotated citation contexts, we achieved an accuracy of 90.7% along with a 90.6% f1-score, in the case of binary classification. Finally, we present a case study to measure the comprehensiveness of our deployed model on a dataset of 3100 K citations taken from the ACL Anthology Reference Corpus. We employed state-of-the-art graph visualization open-source tool Gephi to analyze the various aspects of citation network graphs, for each respective citation behavior.
CITATION STYLE
Aljohani, N. R., Fayoumi, A., & Hassan, S. U. (2021). A novel deep neural network-based approach to measure scholarly research dissemination using citations network. Applied Sciences (Switzerland), 11(22). https://doi.org/10.3390/app112210970
Mendeley helps you to discover research relevant for your work.