Equatorial anisotropy in the inner part of Earth's inner core from autocorrelation of earthquake coda

83Citations
Citations of this article
170Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Earth's solid inner core exhibits strong anisotropy, with wave velocity dependent on the direction of propagation due to the preferential alignment of iron crystals. Variations in the anisotropic structure, laterally and with depth, provide markers for measuring inner-core rotation and offer clues into the formation and dynamics of the inner core. Previous anisotropy models of the inner core have assumed a cylindrical anisotropy in which the symmetry axis is parallel to the Earth's spin axis. An inner part of the inner core with a distinct form of anisotropy has been suggested, but there is considerable uncertainty regarding its existence and characteristics. Here we analyse the autocorrelation of earthquake coda measured by global broadband seismic arrays between 1992 and 2012, and find that the differential travel times of two types of core-penetrating waves vary at low latitudes by up to 10 s. Our findings are consistent with seismic anisotropy in the innermost inner core that has a fast axis near the equatorial plane through Central America and Southeast Asia, in contrast to the north-south alignment of anisotropy in the outer inner core. The different orientations and forms of anisotropy may represent a shift in the evolution of the inner core.

Cite

CITATION STYLE

APA

Wang, T., Song, X., & Xia, H. H. (2015). Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda. Nature Geoscience, 8(3), 224–227. https://doi.org/10.1038/ngeo2354

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free