The recently discovered planetary system HD 45364, which consists of a Jupiter and Saturn-mass planet, is very likely in a 3:2 mean motion resonance. The standard scenario for forming planetary commensurabilities is convergent migration of two planets embedded in a protoplanetary disc. When the planets are initially separated by a period ratio larger than two, convergent migration will most likely lead to a very stable 2:1 resonance. Rapid type III migration of the outer planet crossing the 2:1 resonance is one possible way around this problem. In this paper, we investigate this idea in detail. We present an estimate of the required convergent migration rate and confirm this with N-body and hydrodynamical simulations. If the dynamical history of the planetary system had a phase of rapid inward migration that forms a resonant configuration, we predict that the orbital parameters of the two planets will always be very similar and thus should show evidence of that. We use the orbital parameters from our simulation to calculate a radial velocity curve and compare it to observations. Our model provides a fit that is as good as the previously reported one. The eccentricities of both planets are considerably smaller and the libration pattern is different. Within a few years, it will be possible to observe the planet-planet interaction directly and thus distinguish between these different dynamical states. © ESO, 2010.
CITATION STYLE
Rein, H., Papaloizou, J. C. B., & Kley, W. (2010). The dynamical origin of the multi-planetary system HD 45364. Astronomy and Astrophysics, 510(1). https://doi.org/10.1051/0004-6361/200913208
Mendeley helps you to discover research relevant for your work.