Similarity-based error prediction approach for real-time inflow forecasting

13Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Regardless of extensive researches on hydrologic forecasting models, the issue of updating the outputs from forecasting models has remained a main challenge. Most of the existing output updating methods are mainly based on the presence of persistence in the errors. This paper presents an alternative approach to updating the outputs from forecasting models in order to produce more accurate forecast results. The approach uses the concept of the similarity in errors for error prediction. The K nearest neighbor (KNN) algorithm is employed as a similarity-based error prediction model and improvements are made by new data, and two other forms of the KNN are developed in this study. The KNN models are applied for the error prediction of flow forecasting models in two catchments and the updated flows are compared to those of persistence-based methods such as autoregressive (AR) and artificial neural network (ANN) models. The results show that the similaritybased error prediction models can be recognized as an efficient alternative for real-time inflow forecasting, especially where the persistence in the error series of flow forecasting model is relatively low. © IWA Publishing 2014.

Cite

CITATION STYLE

APA

Akbari, M., & Afshar, A. (2014). Similarity-based error prediction approach for real-time inflow forecasting. Hydrology Research, 45(4–5), 589–602. https://doi.org/10.2166/nh.2013.098

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free