Growth inhibition and alternation of virulence genes of salmonella on produce products treated with polyphenolic extracts from berry pomace

3Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Organic farming, including integrated crop–livestock farms and backyard farming, is gaining popularity in the United States, and products from these farms are commonly sold at farmers’ markets, local stores, and roadside stalls. Because organic farms avoid using antibiotics and chemicals and because they use composted animal waste and nonprofessional harvesting and packaging methods, their products have an increased risk of cross-contamination with zoonotic pathogens. This study sets out to evaluate the efficiency of new postharvest disinfection processes using natural berry pomace extracts (BPEs) as a means to reduce the bacterial load found in two common leafy greens, spinach and celery. Spinach and celery were inoculated with a fixed bacterial load of Salmonella Typhimurium and later were soaked in BPE-supplemented water (wBPE) for increasing periods of time, at two different temperatures (24 and 48C). The remaining live bacteria were quantified (log CFU per leaf), and numbers were compared with those on vegetables soaked in water alone. The relative expression of virulence genes (hilA1/C1/D1, invA1/ C1/E1/F1) of wBPE-treated Salmonella Typhimurium was determined. For spinach, there was a significant (P, 0.05) reduction of Salmonella Typhimurium: 0.2 to 1.2 log CFU/mL and 0.5 to 5 log CFU/mL at 24 and 48C, respectively. For celery, there was also a significant (P, 0.05) reduction of Salmonella Typhimurium at either 24 or 48C. The changes in relative expression of virulence genes of Salmonella Typhimurium isolated from spinach and celery varied depending on the treatment conditions but showed a significant down-regulation of inv genes when treated at 248C for 1,440 min (P, 0.05). After seven uses, the total polyphenolic compounds in wBPE remained at an effective concentration. This research suggests that soaking these vegetables with BPE-containing water at lower temperatures can still reduce the Salmonella Typhimurium load enough to minimize the risk of infection and alter virulence properties.

Cite

CITATION STYLE

APA

Alvarado-Martinez, Z., Tabashsum, Z., Salaheen, S., Mui, C., Lebovic, A., Gaspard, S., … Biswas, D. (2020). Growth inhibition and alternation of virulence genes of salmonella on produce products treated with polyphenolic extracts from berry pomace. Journal of Food Protection, 83(8), 1463–1471. https://doi.org/10.4315/JFP-20-038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free