An original Von Koch curve-shaped tipped electrospinneret was used to prepare a polyimide (PI)-based nanofiber membrane. A multilayer Al2O3@polyimide/polyethylene/Al2O3@polyimide (APEAP) composite membrane was tactfully designed with an Al2O3@ polyimide (AP) membrane as outer shell, imparting high temperature to the thermal run-away separator performance and a core polyethylene (PE) layer imparts the separator with a thermal shut-down property at low temperature (123 °C). An AP electrospun nanofiber was obtained by doping Al2O3 nanoparticles in PI solution. The core polyethylene layer was prepared using polyethylene powder and polyterafluoroethylene (PTFE) miniemulsion through a coating process. The addition of PTFE not only bonds PE power, but also increases the adhesion force between the PE and AP membranes. As a result, the multilayer composite separator has high safety, outstanding electrochemical properties, and better cycling performance as a lithium-ion battery separator.
CITATION STYLE
Yang, W., Liu, Y., Hu, X., Yao, J., Chen, Z., Hao, M., … Li, F. (2019). Multilayer nanofiber composite separator for lithium-ion batteries with high safety. Polymers, 11(10). https://doi.org/10.3390/polym11101671
Mendeley helps you to discover research relevant for your work.