The tunneling of Cooper pairs across a Josephson junction (JJ) allows for the nonlinear inductance necessary to construct superconducting qubits, amplifiers, and various other quantum circuits. An alternative approach using hybrid superconductor-semiconductor JJs can enable superconducting qubit architectures with all electric control. Here we present continuous-wave and time-domain characterization of gatemon qubits and coplanar waveguide resonators based on an InAs two-dimensional electron gas. We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity, and we drive coherent Rabi oscillations between the qubit ground and first excited states. We measure qubit relaxation times to be T1= 100 ns over a 1.5 GHz tunable band. We detail the loss mechanisms present in these materials through a systematic study of the quality factors of coplanar waveguide resonators. While various loss mechanisms are present in III-V gatemon circuits, we detail future directions in enhancing the relaxation times of qubit devices on this platform.
CITATION STYLE
Strickland, W. M., Baker, L. J., Lee, J., Dindial, K., Elfeky, B. H., Strohbeen, P. J., … Shabani, J. (2024). Characterizing losses in InAs two-dimensional electron gas-based gatemon qubits. Physical Review Research, 6(2). https://doi.org/10.1103/PhysRevResearch.6.023094
Mendeley helps you to discover research relevant for your work.