Oxidative stress has recently been considered as a pivotal player in the pathogenesis of diabetic gastrointestinal dysfunction. We therefore investigated the role of 2, 3, 5, 4′-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) that has a strong anti-oxidant property, in diabetic gastrointestinal dysmotility as well as the underlying protective mechanisms. THSG restored the delayed gastric emptying and the increased intestinal transit in streptozotocin (STZ)-induced diabetic mice. Loss of neuronal nitric oxide synthase (nNOS) expression and impaired nonadrenergic, noncholinergic (NANC) relaxations in diabetic mice were relieved by long-term preventive treatment with THSG. Meanwhile, THSG (10-7~10-4 mol/L) enhanced concentration-dependently NANC relaxations of isolated colons in diabetic mice. Diabetic mice displayed a significant increase in Malondialdehyde (MDA) level and decrease in the activity of glutathione peroxidase (GSH-Px), which were ameliorated by THSG. Inhibition of caspase-3 and activation of ERK phosphorylation related MAPK pathway were involved in prevention of enhanced apoptosis in diabetes afforded by THSG. Moreover, THSG prevented the significant decrease in PPAR-γ and SIRT1 expression in diabetic ileum. Our study indicates that THSG improves diabetic gastrointestinal disorders through activation of MAPK pathway and upregulation of PPAR-γ and SIRT1. © 2012 Chang et al.
CITATION STYLE
Chang, M. J., Xiao, J. H., Wang, Y., Yan, Y. L., Yang, J., & Wang, J. L. (2012). 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-Beta-D-Glucoside Improves Gastrointestinal Motility Disorders in STZ-Induced Diabetic Mice. PLoS ONE, 7(12). https://doi.org/10.1371/journal.pone.0050291
Mendeley helps you to discover research relevant for your work.