Recently, an effective membrane theory was proposed that describes the “hydrodynamic” regime of the entanglement dynamics for general chaotic systems. Motivated by the new bit threads formulation of holographic entanglement entropy, given in terms of a convex optimization problem based on flow maximization, or equivalently tight packing of bit threads, we reformulate the membrane theory as a max flow problem by proving a max flow-min cut theorem. In the context of holography, we explain the relation between the max flow program dual to the membrane theory and the max flow program dual to the holographic surface extremization prescription by providing an explicit map from the membrane to the bulk, and derive the former from the latter in the “hydrodynamic” regime without reference to minimal surfaces or membranes.
CITATION STYLE
Agón, C. A., & Mezei, M. (2021). Bit threads and the membrane theory of entanglement dynamics. Journal of High Energy Physics, 2021(11). https://doi.org/10.1007/JHEP11(2021)167
Mendeley helps you to discover research relevant for your work.