Spring temperature drives phenotypic selection on plasticity of flowering time

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In seasonal environments, a high responsiveness of development to increasing temperatures in spring can infer benefits in terms of a longer growing season, but also costs in terms of an increased risk of facing unfavourable weather conditions. Still, we know little about how climatic conditions influence the optimal plastic response. Using 22 years of field observations for the perennial forest herb Lathyrus vernus, we assessed phenotypic selection on among-individual variation in reaction norms of flowering time to spring temperature, and examined if among-year variation in selection on plasticity was associated with spring temperature conditions. We found significant among-individual variation in mean flowering time and flowering time plasticity, and that plants that flowered earlier also had a more plastic flowering time. Selection favoured individuals with an earlier mean flowering time and a lower thermal plasticity of flowering time. Less plastic individuals were more strongly favoured in colder springs, indicating that spring temperature influenced optimal flowering time plasticity. Our results show how selection on plasticity can be linked to climatic conditions, and illustrate how we can understand and predict evolutionary responses of organisms to changing environmental conditions.

Cite

CITATION STYLE

APA

Valdés, A., Arnold, P. A., & Ehrlén, J. (2023). Spring temperature drives phenotypic selection on plasticity of flowering time. Proceedings of the Royal Society B: Biological Sciences, 290(2006). https://doi.org/10.1098/rspb.2023.0670

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free