Significance: In breast-preserving tumor surgery, the inspection of the excised tissue boundaries for tumor residue is too slow to provide feedback during the surgery. The discovery of positive margins requires a new surgery which is difficult and associated with low success. If the re-excision could be done immediately this is believed to improve the success rate considerably. Aim: Our aim is for a fast microscopic analysis that can be done directly on the excised tissue in or near the operating theatre. Approach: We demonstrate the combination of three nonlinear imaging techniques at selected wavelengths to delineate tumor boundaries. We use hyperspectral coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited fluorescence (TPF) on excised patient tissue. Results: We show the discriminatory power of each of the signals and demonstrate a sensitivity of 0.87 and a specificity of 0.95 using four CARS wavelengths in combination with SHG and TPF. We verify that the information is independent of sample treatment. Conclusions: Nonlinear multispectral imaging can be used to accurately determine tumor boundaries. This demonstration using microscopy in the epi-direction directly on thick tissue slices brings this technology one step closer to clinical implementation.
CITATION STYLE
Beletkaia, E., Dashtbozorg, B., Jansen, R. G., Ruers, T. J. M., & Offerhaus, H. L. (2020). Nonlinear multispectral imaging for tumor delineation. Journal of Biomedical Optics, 25(09). https://doi.org/10.1117/1.jbo.25.9.096001
Mendeley helps you to discover research relevant for your work.