Objective: We found previously that interferon regulatory factor (Irf)-1 is a germinal vesicle (GV)-selective gene that highly expressed in GV as compared to metaphase II oocytes. To our knowledge, the function of Irf-1 in oocytes has yet to be examined. The present study was conducted to determine the relationship between retinoic acid (RA) and RA-mediated expression of Irf-1 and the mouse oocyte maturation.Methods: Immature cumulus-oocyte-complexes (COCs) were collected from 17-day-old female mice and cultured in vitro for 16 hours in the presence of varying concentrations of RA (0-10 μM). Rate of oocyte maturation and activation was measured. Gene expression was measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and cytokine secretion in the medium was measured by Bio-Plex analysis. Apoptosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay.Results: The rates of oocyte maturation to metaphase II and oocyte activation increased significantly with RA treatment (10 nM-1 μM). With 100 nM RA treatment, lowest level of Irf-1 mRNA and cumulus cell's apoptosis was found. Among 23 cytokines measured by Bio-Plex system, the substantial changes in secretion of tumor necrosis factor-α, macrophage inflammatory protein-1β, eotaxin and interleukin-12 (p40) from COCs in response to RA were detected.Conclusion: We concluded that the maturation of oocytes and Irf-1 expression are negatively correlated, and RA enhances the developmental competence of mouse immature oocytes in vitro by suppressing apoptosis of cumulus cells. Using a mouse model, results of the present study provide insights into improved culture conditions for in vitro oocyte maturation and relevant cytokine production and secretion in assisted reproductive technology. © 2011. THE KOREAN SOCIETY FOR REPRODUCTIVE MEDICINE.
CITATION STYLE
Kim, Y. S., Kim, E. Y., Moon, J., Yoon, T. K., Lee, W. S., & Lee, K. A. (2011). Expression of interferon regulatory factor-1 in the mouse cumulus-oocyte complex is negatively related with oocyte maturation. Clinical and Experimental Reproductive Medicine, 38(4), 193–202. https://doi.org/10.5653/cerm.2011.38.4.193
Mendeley helps you to discover research relevant for your work.