Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance

16Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Moth-eye-inspired nanostructures are highly useful for antireflection applications. However, block copolymer micelle lithography, an effective method to prepare moth eye nanopillars, can only be used on a limited choice of substrates. Another drawback of nanopillar substrates is that contamination is easily absorbed, thereby reducing transmittance. The production of antireflective surfaces that are contamination-resistant or that can be cleaned easily without the loss of optical properties remains challenging. Here, we describe an approach for creating inverse moth eye nanostructures on other optical substrates than the most commonly used fused silica. We demonstrate its feasibility by fabricating a borosilicate substrate with inverse nanostructures on both sides. The etching of nanoholes on both sides of the substrate improves its transmittance by 8%, thereby surpassing the highest increase of transmittance yet to be obtained with nanopillars on fused silica. More importantly, the substrate with inverse moth eye nanostructures is more robust against contaminations than the substrates with nanopillars. No significant decrease in performance is observed after five cycles of repeated contamination and cleaning. Our approach is transferable to a variety of optical materials, rendering our antireflection nanostructures ideal for applications in touch devices such as touch screens and display panels.

Cite

CITATION STYLE

APA

Diao, Z., Hirte, J., Chen, W., & Spatz, J. P. (2017). Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance. ACS Omega, 2(8), 5012–5018. https://doi.org/10.1021/acsomega.7b01001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free