Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary

39Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesis and function in the gonads remains poorly understood. Here we have exploited a lymphatic-specific Prox1-EGFP reporter mouse model and optical projection tomography technology to characterize both the temporal and spatial development of the lymphatic vessel network in mouse testes and ovaries. We find that lymphangiogenesis in the testis is initiated during late gestation, but in contrast to other organs, lymphatic vessels remain confined to the testis cap and, unlike blood vessels, do not infiltrate the entire organ. Conversely, lymphatic vessels invade the ovarian tissue, beginning postnatally, and sprouting from preexisting lymphatic vessels at the extraovarian rete. The ovary develops a rich network of lymphatic vessels, extending from the medulla into the surrounding cortex adjacent to developing follicles. This study reveals distinct patterns of lymphangiogenesis in the testes and ovaries and will serve as the basis for the identification of the divergent molecular pathways that control morphogenesis and the function of the lymphatic vasculature in these two organs. © 2012 Svingen et al.

Cite

CITATION STYLE

APA

Svingen, T., François, M., Wilhelm, D., & Koopman, P. (2012). Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary. PLoS ONE, 7(12). https://doi.org/10.1371/journal.pone.0052620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free