Enhancing Cellular Coverage Quality by Virtual Access Point and Wireless Power Transfer

15Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The ultradensification deploying for cellular networks is a direct and effective method for the improvement of network capacity. However, the benefit is achieved at the cost of network infrastructure investment and operating overheads, especially when there is big gap between peak-hour Internet traffic and average one. Therefore, we put forward the concept of virtual cellular coverage area, where wireless terminals with high-end configuration are motivated to enhance cellular coverage quality by both providing RF energy compensation and rewarding free traffic access to Internet. This problem is formulated as the Stackelberg game based on three-party circular decision, where a Macro BS (MBS) acts as the leader to offer a charging power to Energy Transferring Relays (ETRs), and the ETRs and their associating Virtual Access Points (VAPs) act as the followers to make their decisions, respectively. According to the feedback from the followers, the leader may readjust its strategy. The circular decision is repeated until the powers converge. Also, the better response algorithm for each game player is proposed to iteratively achieve the Stackelberg-Nash Equilibrium (SNE). Theoretical analysis proves the convergence of the proposed game scheme, and simulation results demonstrate its effectiveness.

Cite

CITATION STYLE

APA

Gui, J., Hui, L., & Xiong, N. (2018). Enhancing Cellular Coverage Quality by Virtual Access Point and Wireless Power Transfer. Wireless Communications and Mobile Computing, 2018. https://doi.org/10.1155/2018/9218239

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free