DNA sequences alignment in multi-GPUs: Acceleration and energy payoff

5Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: We present a performance per watt analysis of CUDAlign 4.0, a parallel strategy to obtain the optimal pairwise alignment of huge DNA sequences in multi-GPU platforms using the exact Smith-Waterman method. Results: Our study includes acceleration factors, performance, scalability, power efficiency and energy costs. We also quantify the influence of the contents of the compared sequences, identify potential scenarios for energy savings on speculative executions, and calculate performance and energy usage differences among distinct GPU generations and models. For a sequence alignment on chromosome-wide scale (around 2 Petacells), we are able to reduce execution times from 9.5 h on a Kepler GPU to just 2.5 h on a Pascal counterpart, with energy costs cut by 60%. Conclusions: We find GPUs to be an order of magnitude ahead in performance per watt compared to Xeon Phis. Finally, versus typical low-power devices like FPGAs, GPUs keep similar GFLOPS/w ratios in 2017 on a five times faster execution.

Cite

CITATION STYLE

APA

Pérez-Serrano, J., Sandes, E., Magalhaes Alves de Melo, A. C., & Ujaldón, M. (2018). DNA sequences alignment in multi-GPUs: Acceleration and energy payoff. BMC Bioinformatics, 19. https://doi.org/10.1186/s12859-018-2389-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free