Monitoring Looting at Cultural Heritage Sites: Applying Deep Learning on Optical Unmanned Aerial Vehicles Data as a Solution

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The looting of cultural heritage sites has been a growing problem and threatens national economies, social identity, destroys research potential, and traumatizes communities. For many countries, the challenge in protecting heritage is that there are often too few resources, particularly paid site guards, while sites can also be in remote locations. Here, we develop a new approach that applies deep learning methods to detect the presence of looting at heritage sites using optical imagery from unmanned aerial vehicles (UAVs). We present results that demonstrate the accuracy, precision, and recall of our approach. Results show that optical UAV data can be an easy way for authorities to monitor heritage sites, demonstrating the utility of deep learning in aiding the protection of heritage sites by automating the detection of any new damage to sites. We discuss the impact and potential for deep learning to be used as a tool for the protection of heritage sites. How the approach could be improved with new data is also discussed. Additionally, the code and data used are provided as part of the outputs.

Cite

CITATION STYLE

APA

Altaweel, M., Khelifi, A., & Shana’ah, M. M. (2024). Monitoring Looting at Cultural Heritage Sites: Applying Deep Learning on Optical Unmanned Aerial Vehicles Data as a Solution. Social Science Computer Review, 42(2), 480–495. https://doi.org/10.1177/08944393231188471

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free