The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.
CITATION STYLE
Hindman, B. W., & Jain, R. (2018). A Novel Approach to Resonant Absorption of the Fast Magnetohydrodynamic Eigenmodes of a Coronal Arcade. The Astrophysical Journal, 858(1), 6. https://doi.org/10.3847/1538-4357/aab9b1
Mendeley helps you to discover research relevant for your work.