High-performance chiroptical synaptic phototransistors are successfully demonstrated using heterojunctions composed of a self-assembled nanohelix of a π-conjugated molecule and a metal oxide semiconductor. To impart strong chiroptical activity to the device, a diketopyrrolopyrrole-based π-conjugated molecule decorated with chiral glutamic acid is newly synthesized; this molecule is capable of supramolecular self-assembly through noncovalent intermolecular interactions. In particular, nanohelix formed by intertwinded fibers with strong and stable chiroptical activity in a solid-film state are obtained through hydrogen-bonding-driven, gelation-assisted self-assembly. Phototransistors based on interfacial charge transfer at the heterojunction from the chiroptical nanohelix to the metal oxide semiconductor show excellent chiroptical detection with a high photocurrent dissymmetry factor of 1.97 and a high photoresponsivity of 218 A W−1. The chiroptical phototransistor demonstrates photonic synapse-like, time-dependent photocurrent generation, along with persistent photoconductivity, which is attributed to the interfacial charge trapping. Through the advantage of synaptic functionality, a trained convolutional neural network successfully recognizes noise-reduced circularly polarized images of handwritten alphabetic characters with better than 89.7% accuracy.
CITATION STYLE
Lee, H., Hwang, J. H., Song, S. H., Han, H., Han, S. J., Suh, B. L., … Lim, J. A. (2023). Chiroptical Synaptic Heterojunction Phototransistors Based on Self-Assembled Nanohelix of π-Conjugated Molecules for Direct Noise-Reduced Detection of Circularly Polarized Light. Advanced Science, 10(27). https://doi.org/10.1002/advs.202304039
Mendeley helps you to discover research relevant for your work.