Arrow R-CNN for handwritten diagram recognition

29Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We address the problem of offline handwritten diagram recognition. Recently, it has been shown that diagram symbols can be directly recognized with deep learning object detectors. However, object detectors are not able to recognize the diagram structure. We propose Arrow R-CNN, the first deep learning system for joint symbol and structure recognition in handwritten diagrams. Arrow R-CNN extends the Faster R-CNN object detector with an arrow head and tail keypoint predictor and a diagram-aware postprocessing method. We propose a network architecture and data augmentation methods targeted at small diagram datasets. Our diagram-aware postprocessing method addresses the insufficiencies of standard Faster R-CNN postprocessing. It reconstructs a diagram from a set of symbol detections and arrow keypoints. Arrow R-CNN improves state-of-the-art substantially: on a scanned flowchart dataset, we increase the rate of recognized diagrams from 37.7 to 78.6%.

References Powered by Scopus

Microsoft COCO: Common objects in context

28834Citations
N/AReaders
Get full text

Rich feature hierarchies for accurate object detection and semantic segmentation

26258Citations
N/AReaders
Get full text

Feature pyramid networks for object detection

19867Citations
N/AReaders
Get full text

Cited by Powered by Scopus

DrawnNet: Offline Hand-Drawn Diagram Recognition Based on Keypoint Prediction of Aggregating Geometric Characteristics

12Citations
N/AReaders
Get full text

Analysis of Customer Satisfaction with the Quality of Energy Market Services in Poland

7Citations
N/AReaders
Get full text

DiagramNet: Hand-Drawn Diagram Recognition Using Visual Arrow-Relation Detection

6Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Schäfer, B., Keuper, M., & Stuckenschmidt, H. (2021). Arrow R-CNN for handwritten diagram recognition. In International Journal on Document Analysis and Recognition (Vol. 24, pp. 3–17). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10032-020-00361-1

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

56%

Researcher 2

22%

Professor / Associate Prof. 1

11%

Lecturer / Post doc 1

11%

Readers' Discipline

Tooltip

Computer Science 8

67%

Engineering 3

25%

Business, Management and Accounting 1

8%

Save time finding and organizing research with Mendeley

Sign up for free