ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine

29Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.

Cite

CITATION STYLE

APA

Fontana, D., Mauri, M., Renso, R., Docci, M., Crespiatico, I., Røst, L. M., … Piazza, R. (2020). ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19721-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free