Early experiences of integrating an artificial intelligence-based diagnostic decision support system into radiology settings: a qualitative study

5Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objectives: Artificial intelligence (AI)-based clinical decision support systems to aid diagnosis are increasingly being developed and implemented but with limited understanding of how such systems integrate with existing clinical work and organizational practices. We explored the early experiences of stakeholders using an AI-based imaging software tool Veye Lung Nodules (VLN) aiding the detection, classification, and measurement of pulmonary nodules in computed tomography scans of the chest. Materials and methods: We performed semistructured interviews and observations across early adopter deployment sites with clinicians, strategic decision-makers, suppliers, patients with long-term chest conditions, and academics with expertise in the use of diagnostic AI in radiology settings. We coded the data using the Technology, People, Organizations, and Macroenvironmental factors framework. Results: We conducted 39 interviews. Clinicians reported VLN to be easy to use with little disruption to the workflow. There were differences in patterns of use between experts and novice users with experts critically evaluating system recommendations and actively compensating for system limitations to achieve more reliable performance. Patients also viewed the tool positively. There were contextual variations in tool performance and use between different hospital sites and different use cases. Implementation challenges included integration with existing information systems, data protection, and perceived issues surrounding wider and sustained adoption, including procurement costs. Discussion: Tool performance was variable, affected by integration into workflows and divisions of labor and knowledge, as well as technical configuration and infrastructure. Conclusion: The socio-organizational factors affecting performance of diagnostic AI are under-researched and require attention and further research.

Cite

CITATION STYLE

APA

Farič, N., Hinder, S., Williams, R., Ramaesh, R., Bernabeu, M. O., van Beek, E., & Cresswell, K. (2024). Early experiences of integrating an artificial intelligence-based diagnostic decision support system into radiology settings: a qualitative study. Journal of the American Medical Informatics Association, 31(1), 24–34. https://doi.org/10.1093/jamia/ocad191

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free