No-Snapback LDMOS Using Adaptive RESURF and Hybrid Source for Ideal SOA

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

A simple modification to the lateral DMOS is demonstrated, enabling a significant extension to the electrical safe operating region. This approach uses a novel Hybrid Source to suppress the parasitic bipolar, prevent snapback and enable operation at high drain voltage current regions that have traditionally been inaccessible due to triggering of the parasitic bipolar. Trigger currents exceeding 10x that of conventional PN source devices under grounded gate, very fast TLP conditions have been achieved. This improvement does not compromise the basic DC parameters, such as specific on-resistance or breakdown voltage. This paper covers the device architecture, formation of the Hybrid Source, electrical performance, TCAD simulation and discussion of the mechanisms behind this new device and the improvements it enables.

Cite

CITATION STYLE

APA

Toner, B., Eisenbrandt, S., Frank, M., Granzner, R., Steinbeck, L., Davis, D., … Richards, W. R. (2021). No-Snapback LDMOS Using Adaptive RESURF and Hybrid Source for Ideal SOA. IEEE Journal of the Electron Devices Society, 9, 902–908. https://doi.org/10.1109/JEDS.2021.3116254

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free