Targeted inhibition of interferon-γ-dependent intercellular adhesion molecule-1 (ICAM-1) expression using dominant-negative Stat1

86Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A subset of epithelial immune-response genes (including intercellular adhesion molecule-1 (ICAM-1)) depends on an IFN-γ signal transduction pathway with the Stat1 transcription factor as a critical intermediate. Excessive local activation of this pathway may lead to airway inflammation, so we sought to selectively down-regulate the pathway using a dominant- negative strategy for inhibition of epithelial Stat1 in a primary culture airway epithelial cell model. Using a Stat1-deficient cell line, we demonstrated that transfection of wild-type Stat1 expression plasmid restored appropriate Stat1 expression and IFN-γ-dependent phosphorylation as well as consequent IFN-γ activation of cotransfected ICAM-1 promoter constructs and endogenous ICAM-1 gene expression. However, mutations of Stat1 at Tyr-701 (JAK kinase phosphorylation site), Glu-428/429 (putative DNA-binding site), His-713 (splice site resulting in Stat1β formation), or Ser-727 (MAP kinase phosphorylation site) all decreased Stat1 capacity to activate the ICAM-1 promoter. The Tyr-701 mutant (followed by the His-713 mutant) were most effective in disabling Stat1 function and in overcoming the activating effect of cotransfected wild-type Stat1 in this cell system thereby highlighting the effectiveness of blocking Stat1 homo- and hetero-dimerization. In experiments using primary culture human tracheobronchial epithelial cells (hT-BECs) and each of the four Stat1 mutant plasmids, transfection with the Tyr-701 and His-713 mutants again most effectively inhibited IFN-γ activation of an ICAM-1 gene promoter construct. Then by transfecting bTBECs with wild-type or mutant Stat1 tagged with a Flag reporter sequence, we used dual immunofluorescence to show that hTBECs expressing the Tyr-701 or His-713 mutants were prevented from expressing endogenous ICAM-1 in response to IFN- γ treatment. The capacity of a specific Stat1 mutations to exert a potent dominant-negative effect on IFN-γ signal transduction provides for further definition of Stat1 structure function and a means for natural or engineered expression of mutant Stat1 to selectively down-regulate activity of this pathway in a cell type- or tissue-specific manner during immune and/or inflammatory responses.

Cite

CITATION STYLE

APA

Walter, M. J., Look, D. C., Tidwell, R. M., Roswit, W. T., & Holtzman, M. J. (1997). Targeted inhibition of interferon-γ-dependent intercellular adhesion molecule-1 (ICAM-1) expression using dominant-negative Stat1. Journal of Biological Chemistry, 272(45), 28582–28589. https://doi.org/10.1074/jbc.272.45.28582

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free