Eukaryotes possess several RNA surveillance mechanisms that prevent undesirable aberrant RNAs from accumulating. Arabidopsis XRN2, XRN3, and XRN4 are three orthologs of the yeast 59-to-39 exoribonuclease, Rat1/Xrn2, that function in multiple RNA decay pathways. XRN activity is maintained by FIERY1 (FRY1), which converts the XRN inhibitor, adenosine 39, 59-bisphosphate (PAP), into 59AMP. To identify the roles of XRNs and FRY1 in suppression of non-coding RNAs, strand-specific genome-wide tiling arrays and deep strand-specific RNA-Seq analyses were carried out in fry1 and xrn single and double mutants. In fry1-6, about 2000 new transcripts were identified that extended the 39 end of specific mRNAs; many of these were also observed in genotypes that possess the xrn3-3 mutation, a partial loss-of-function allele. Mutations in XRN2 and XRN4 in combination with xrn3-3 revealed only a minor effect on 39 extensions, indicating that these genes may be partially redundant with XRN3. We also observed the accumulation of 39 remnants of many DCL1-processed microRNA (miRNA) precursors in fry1-6 and xrn3-3. These findings suggest that XRN3, in combination with FRY1, is required to prevent the accumulation of 39 extensions that arise from thousands of mRNA and miRNA precursor transcripts. © 2012 Kurihara et al.
CITATION STYLE
Kurihara, Y., Schmitz, R. J., Nery, J. R., Schultz, M. D., Okubo-Kurihara, E., Morosawa, T., … Ecker, J. R. (2012). Surveillance of 39 noncoding transcripts requires FIERY1 and XRN3 in arabidopsis. G3: Genes, Genomes, Genetics, 2(4), 487–498. https://doi.org/10.1534/g3.111.001362
Mendeley helps you to discover research relevant for your work.