Transposon excision from an atypical site: A mechanism of evolution of novel transposable elements

4Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology medited non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3′ to 5′ trans-esterification as an intermediate a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of fianking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations. © 2007 Langer et al.

Cite

CITATION STYLE

APA

Langer, M., Sniderhan, L. F., Grossniklaus, U., & Ray, A. (2007). Transposon excision from an atypical site: A mechanism of evolution of novel transposable elements. PLoS ONE, 2(10). https://doi.org/10.1371/journal.pone.0000965

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free