Locality Is Dead! Long Live Locality!

11Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Several decades of theory and experiment into EPR correlations have led to the widely held belief that reality is non-local, in spite of the fact that this violates special relativity. To date, no experiment has shown a violation of special relativity, and EPR experiments do not demonstrate the existence of superluminal information exchange, merely correlations which violate certain inequalities. Every “loophole” in these hidden variable theories has been thought plugged. However, there is much confusion in the literature due to conflation of the terms “locality,” “realism,” “hidden variables,” “non-contextuality.” The presence of local hidden variables is thought to necessarily lead to a Kolmogorov probability structure (hence non-contextuality), but this is an assumption, one which is not true in general once context effects are taken into account. Treated as an observational theory, several authors have shown no incompatibility between quantum mechanics and locality, and that the Bell scenario is actually about whether reality is contextual. This paper proposes a descriptive theory by assuming a generated reality (following Whitehead's Process Theory) which can violate the principle of continuity and possess non-Kolmogorov probability structure, and reproduce the results of non-relativistic quantum mechanics, while allowing only causally local information exchange without hidden variables. A generated reality is thus compatible with both quantum mechanics and special relativity, reproducing all of the results expected from quantum mechanics while still maintaining causally local realism. This process model thus appears to be an ideal candidate for developing theories for the unification of quantum mechanics and general relativity.

Cite

CITATION STYLE

APA

Sulis, W. (2020). Locality Is Dead! Long Live Locality! Frontiers in Physics, 8. https://doi.org/10.3389/fphy.2020.00360

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free