Fabrication and Characterization of Activated Carbon from Phyllostachys edulis Using Single-Step KOH Activation with Different Temperatures

10Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Biomass waste from harvestable output is produced in significant quantities by agricultural and forestry processes and can have detrimental effects on the ecosystem. Therefore, biomass derived from the waste in the environment has been recognized as a potential source for preparing functional materials in recent years. In this study, activated carbon (ACs) was fabricated and characterized from Phyllostachys edulis (Moso bamboo) using single-step potassium hydroxide (KOH) activation at different temperatures (500 °C to 1000 °C). The prepared ACs were characterized for surface morphology, surface area, functional groups and crystallinity using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, Fourier transform infrared (FTIR) and X-ray diffraction (XRD), respectively. The SEM revealed well-formed pores on the surface of all ACs, while BET analysis revealed the presence of microporous (≤800 °C) and mesoporous (>800 °C) structures. SBET surface area and total pore volume increased with increasing activation temperature, from 434 to 1790 m2/g and 0.2089 to 0.8801 cm3/g, reaching a maximum at 900 °C. FTIR revealed the presence of carbonyl and hydroxyl groups on the surface. XRD showed a dominant amorphous structure and a low crystallization degree in all ACs.

Cite

CITATION STYLE

APA

Guo, Y., & Wang, Q. (2022). Fabrication and Characterization of Activated Carbon from Phyllostachys edulis Using Single-Step KOH Activation with Different Temperatures. Processes, 10(9). https://doi.org/10.3390/pr10091712

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free