In this paper, for the first time, the tensile strength of water is directly measured using an optofluidic chip based on the displacement of air-water interface deformation with homogeneous nucleation. When water in a microchannel is stretched dynamically via laser-induced shock reflection at the air-water interface, the shock pressures are determined by measuring the displacements of the deformed interface. Observation of the vapor bubbles is used as a probe to identify the cavitation threshold with a critical distance, and the tensile strength of water at 20 °C is measured to be -33.3 ± 2.8 MPa. This method can be extended to investigate the tensile strength of other soft materials such as glycerol, which is measured to be -59.8 ± 10.7 MPa at 20 °C.
CITATION STYLE
Li, Z. G., Xiong, S., Chin, L. K., Ando, K., Zhang, J. B., & Liu, A. Q. (2015). Water’s tensile strength measured using an optofluidic chip. Lab on a Chip, 15(10), 2158–2161. https://doi.org/10.1039/c5lc00048c
Mendeley helps you to discover research relevant for your work.