The increasing incidence of implant-associated infections has prompted the development of effective strategies to prevent biofilm formation on these devices. In this work, pristine graphene nanoplatelet/polydimethylsiloxane (GNP/PDMS) surfaces containing different GNP loadings (1, 2, 3, 4, and 5 wt%) were produced and evaluated on their ability to mitigate biofilm development. After GNP loading optimization, the most promising surface was tested against single-and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The antibiofilm activity of GNP/PDMS surfaces was determined by the quantification of total, viable, culturable, and viable but nonculturable (VBNC) cells, as well as by confocal laser scanning microscopy (CLSM). Results showed that 5 wt% GNP loading reduced the number of total (57%), viable (69%), culturable (55%), and VBNC cells (85%) of S. aureus biofilms compared to PDMS. A decrease of 25% in total cells and about 52% in viable, culturable, and VBNC cells was observed for P. aeruginosa biofilms. Dual-species biofilms demonstrated higher resistance to the antimicrobial activity of GNP surfaces, with lower biofilm cell reductions (of up to 29% when compared to single-species biofilms). Still, the effectiveness of these surfaces in suppressing single-and dual-species biofilm formation was confirmed by CLSM analysis, where a decrease in biofilm biovolume (83% for S. aureus biofilms and 42% for P. aeruginosa and dual-species biofilms) and thickness (on average 72%) was obtained. Overall, these results showed that pristine GNPs dispersed into the PDMS matrix were able to inhibit biofilm growth, being a starting point for the fabrication of novel surface coatings based on functionalized GNP/PDMS composites.
CITATION STYLE
Oliveira, I. M., Gomes, M., Gomes, L. C., Pereira, M. F. R., Soares, O. S. G. P., & Mergulhão, F. J. (2022). Performance of Graphene/Polydimethylsiloxane Surfaces against S. aureus and P. aeruginosa Single-and Dual-Species Biofilms. Nanomaterials, 12(3). https://doi.org/10.3390/nano12030355
Mendeley helps you to discover research relevant for your work.