Binding a small molecule to proteins causes conformational changes, but often to a limited extent. Here, we demonstrate that the interaction of a CO-releasing molecule (CORM3) with a photoreceptor photoactive yellow protein (PYP) drives large structural changes in the latter. The interaction of CORM3 and a mutant of PYP, Met100Ala, not only trigger the isomerization of its chromophore, p-coumaric acid, from its anionic trans configuration to a protonated cis configuration, but also increases the content of β-sheet at the cost of α-helix and random coil in the secondary structure of the protein. The CORM3 derived Met100Ala is found to highly resemble the signaling state, which is one of the key photo-intermediates of this photoactive protein, in both protein local conformation and chromophore configuration. The organometallic reagents hold promise as protein engineering tools. This work highlights a novel approach to structurally accessing short lived intermediates of proteins in a steady-state fashion.
CITATION STYLE
Yu, P., Song, L., Qin, J., & Wang, J. (2017). Capturing the photo-signaling state of a photoreceptor in a steady-state fashion by binding a transition metal complex. Protein Science, 26(11), 2249–2256. https://doi.org/10.1002/pro.3284
Mendeley helps you to discover research relevant for your work.