A Novel Framework for Windows Malware Detection Using a Deep Learning Approach

5Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Malicious software (malware) is one of the main cyber threats that organizations and Internet users are currently facing. Malware is a software code developed by cybercriminals for damage purposes, such as corrupting the system and data as well as stealing sensitive data. The damage caused by malware is substantially increasing every day. There is a need to detect malware efficiently and automatically and remove threats quickly from the systems. Although there are various approaches to tackle malware problems, their prevalence and stealthiness necessitate an effective method for the detection and prevention of malware attacks. The deep learning-based approach is recently gaining attention as a suitable method that effectively detects malware. In this paper, a novel approach based on deep learning for detecting malware proposed. Furthermore, the proposed approach deploys novel feature selection, feature co-relation, and feature representations to significantly reduce the feature space. The proposed approach has been evaluated using a Microsoft prediction dataset with samples of 21,736 malware composed of 9 malware families. It achieved 96.01% accuracy and outperformed the existing techniques of malware detection.

Cite

CITATION STYLE

APA

Darem, A. A. (2022). A Novel Framework for Windows Malware Detection Using a Deep Learning Approach. Computers, Materials and Continua, 72(1), 461–479. https://doi.org/10.32604/cmc.2022.023566

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free