Differential annotation of tRNA genes with anticodon CAT in bacterial genomes

33Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

We have developed three strategies to discriminate among the three types of tRNA genes with anticodon CAT (tRNAIle, elongator tRNAMet and initiator tRNAfMet) in bacterial genomes. With these strategies, we have classified the tRNA genes from 234 bacterial and several organellar genomes. These sequences, in an aligned or unaligned format, may be used for the identification and annotation of tRNA (CAT) genes in other genomes. The first strategy is based on the position of the problem sequences in a phenogram (a tree-like network), the second on the minimum average number of differences against the tRNA sequences of the three types and the third on the search for the highest score value against the profiles of the three types of tRNA genes. The species with the maximum number of tRNAfMet and tRNA Met was Photobacterium profundum, whereas the genome of one Escherichia coli strain presented the maximum number of tRNAIle (CAT) genes. This last tRNA gene and tilS, encoding an RNA-modifying enzyme, are not essential in bacteria. The acquisition of a tRNAIle (TAT) gene by Mycoplasma mobile has led to the loss of both the tRNA Ile (CAT) and the tilS genes. The new tRNA has appropriated the function of decoding AUA codons. © 2006 Oxford University Press.

Cite

CITATION STYLE

APA

Silva, F. J., Belda, E., & Talens, S. E. (2006). Differential annotation of tRNA genes with anticodon CAT in bacterial genomes. Nucleic Acids Research, 34(20), 6015–6022. https://doi.org/10.1093/nar/gkl739

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free