The chemical mass balance model was applied to estimate the major sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) at an Industrial Region in Kaohsiung, Taiwan. The gaseous and particulate phases of 16 individual compounds were analyzed between March 2012 and August 2012. The mean total concentrations and total BaPeq were higher during the cold season and lower during the warm summer, with gaseous PAHs predominant at all sites. Low weight-PAHs and median weight-PAHs were found predominantly in the gaseous phase, while high weight-PAHs were predominant in the particle phase. Results from the receptor model revealed that the average contributions were 38.2%, 27.2%, 20.7%, 6.8%, 5.2%, and 2.0% from vehicles, heavy oil combustion, natural gas combustion, incinerator, tetrabromobisphenol A production, and diesel combustion at the seven receptors, respectively. Vehicle emissions appear to be the significant source of PAHs in the investigated area, although other industrial sources, as described above, also have an impact on the total PAHs.
CITATION STYLE
Lai, Y. C., Tsai, C. H., Chen, Y. L., & Chang-Chien, G. P. (2017). Distribution and sources of atmospheric polycyclic aromatic hydrocarbons at an industrial region in Kaohsiung, Taiwan. Aerosol and Air Quality Research, 17(3), 776–787. https://doi.org/10.4209/aaqr.2016.11.0482
Mendeley helps you to discover research relevant for your work.