Efficient Synthesis of High-Performance Anion Exchange Membranes by Applying Clickable Tetrakis(dialkylamino)phosphonium Cations

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Tetrakis(dialkylamino)phosphonium (TKDAAP) compounds exhibit extraordinary base resistance, a prerequisite feature for high-performance anion exchange membranes (AEMs). It is, however, challenging to synthesize a TKDAAP compound with reactive functionality that can be used to link the cation to a polymer backbone. In this study, two TKDAAP compounds with alkyne functionality were synthesized and incorporated into an azide-modified SBS triblock copolymer backbone via Cu(I)-catalyzed alkyne–azide cycloaddition (CuAAC) “click” chemistry. The properties of the resulting AEMs were characterized. It was found that (1) the triazole linker between the cation and the polymer backbone was stable under alkaline conditions; (2) varying the substituents of TKDAAP compounds could dramatically alter the stability; and (3) increasing the hydrophilicity of the AEM was an efficient way to enhance its ionic conductivity. Using clickable TKDAAP compounds makes it easy to combine various cations into polymer backbones with adjustable cation content, thus potentially leading to an efficient way to screen a wide variety of polyelectrolyte structures to identify the most promising candidates for high-performance AEMs.

Cite

CITATION STYLE

APA

Wang, Y., Wang, Y., Sahu, S., Gallo, A. A., & Zhou, X. D. (2023). Efficient Synthesis of High-Performance Anion Exchange Membranes by Applying Clickable Tetrakis(dialkylamino)phosphonium Cations. Polymers, 15(2). https://doi.org/10.3390/polym15020352

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free