Ionic mechanisms of ST segment elevation in electrocardiogram during acute myocardial infarction

8Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

ST elevation on an electrocardiogram is a hallmark of acute transmural ischemia. However, the underlying mechanism remains unclear. We hypothesized that high ischemic sensitivities of epicardial adenosine triphosphate-sensitive potassium (IKATP) and sodium (INa) currents play key roles in the genesis of ST elevation. Using a multi-scale heart simulation under moderately ischemic conditions, transmural heterogeneities of IKATP and INa created a transmural gradient, opposite to that observed in subendocardial injury, leading to ST elevation. These heterogeneities also contributed to the genesis of hyper-acute T waves under mildly ischemic conditions. By contrast, under severely ischemic conditions, although action potentials were suppressed transmurally, the potential gradient at the boundary between the ischemic and normal regions caused ST elevation without a contribution from transmural heterogeneity. Thus, transmural heterogeneities of ion channel properties may contribute to the genesis of ST-T changes during mild or moderate transmural ischemia, while ST elevation may be induced without the contribution of heterogeneity under severe ischemic conditions.

Cite

CITATION STYLE

APA

Okada, J. I., Fujiu, K., Yoneda, K., Iwamura, T., Washio, T., Komuro, I., … Sugiura, S. (2020). Ionic mechanisms of ST segment elevation in electrocardiogram during acute myocardial infarction. Journal of Physiological Sciences, 70(1). https://doi.org/10.1186/s12576-020-00760-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free